

Design and Implementation of Low–Power Embedded 3D Graphics Rendering Engine for Mobile Applications using the Embedded Memory Logic Technology

Ramchan Woo

2000. 12. 19 Semiconductor System Laboratory Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology (KAIST)

Ramchan Woo

Outline

- Introduction
- Architecture
- Memory Access
- Circuit Implementation
- Performance Comparison
- Conclusion and Further Works

Introduction

Multimedia PDA-Chip

- Personal Information Management
- MP3 Playback
- Realtime Video Decoding
- 3D Graphics Rendering

World's First One-chip Implementation for PDA

3D-CG in PDA-Chip

E3GRE Features

- Gouraud Shading
- Hidden Surface Removal with 16bit Z-buffer
- Alpha-Blending for Transparency
- Double-Buffering for Flicker-Free Animation
- Direct Video Transfer through SAM
- 24bit True color on 256 x 256 screen
- 2.22Mtris/sec @ 20MHz
- 3.2GByte/sec Memory BW @ 20MHz
- 6Mb Embedded DRAM Frame-Buffer
- Low Power consumption

Outline

- Introduction
- Architecture
- Memory Access
- Circuit Implementation
- Performance Comparison
- Conclusion and Further Works

Previous EML Architecures

GPP + Single DRAM

- IRAM (Berkeley), M32RD (Mitsubishi)
- General-Purpose Scalar Processor
- Sequential Memory Access with Bank Interleaving
- Small-Width of Datapath (32b or 64b)
- Optional Vector Unit (1024b -> 32b)
- Huge Area, Huge Power

SPP + Single DRAM

- 3D-RAM (Mitsubishi), GS@PS2 (SONY)
- Special-Purpose Scalar Processor
- Large-Width of Datapath (128b)
- Sequential Memory Access with Bank Interleaving
- High Power due to High-CLK @ SPP

Previous EML Architecures (Cont d)

1D Array (PEs+DRAMs)

- Media-Chip (Hitachi), PIP-RAM (NEC)
- Processing Elements
- Independent Memory Access
- Extra Controller is Required for 3D-CG
- Low-Power
- Area Panelty due to Bad DRAM Cell-Efficiency
- Layout Difficulty

2D Array (PEs+DRAMs)

- · RamP-1 (KAIST)
- Processing Elements
- Independent Memory Access
- Well matched to 3D-CG
- Low-Power, High-Performance
- Large Area Panelty due to Bad DRAM Cell-Efficiency
- Layout Difficulty

8

Proposed ViSTA Architecture

Virtually Spanning 2D Array (ViSTA)

- Hierarchical 1+8 Processing Elements
- Independent-controlled DRAM's
- "Logically Local" / "Physically Global" Frame Buffer
- Intellegent Memory Interface Circuit
- Low-Power, High-Performance, Small-Area
- Applicable to PDA-3D

ViSTA Operation

Ramchan Woo 10

E3GRE Block Diagram

Core and eDRAM are separated by FBI

Outline

- Introduction
- Architecture
- Memory Access
- Circuit Implementation
- Performance Comparison
- Conclusion and Further Works

Conventional Memory Mappings

2D Blocking

- PC-Graphics
- 4-way Bank Interleaving
- 1 Block maps into 1 DRAM Row
- Unnecessary Power Consumption
- Serial Pixel Access
- Doesn't fit well to Parallel Rasterization

Independent Assignment

- RamP-1, PixelFlow, InfiniteReality
- Independent Memory Control
- Reduced Power Consumption
- Parallel Pixel Access
- Well matched to Parallel Rasterization
- Increased Die Area due to DRAM cell efficiency
- Layout difficulty

Proposed Memory Mapping

- Selective and Alternative Line-Block Activation (SALBA)
 - 4 Independent Memory
 - Line-Block consists of 8x1 Screen Pixels
 - 1 Line-Block maps into 1 DRAM SWD
 - Line-Block Read/Write with embedded-DRAM (x320/block)

Memory Mapping (cont d)

Simultaneous and Continuous RMW

V0	A0	B0
V1		
V2	A0	B0
V3	A1	B
V4	A0	B0
V5		
V6	A0	B0
V7	//////X#X/////////	

Low-Power DRAM Access

Selective Macro Activation (SMA)

Active only necessary Macro(s)

Partial Wordline Activation (PWA)

Simultaneously read or write 8pixel x (24bit RGB + 16bit Z)

3D

Active only necessary Sub-Wordline

Low-Power DRAM Access

• Partial I/O Activation (PIA)

Memory Interface in ViSTA/SALBA

- Comand Generation for 12 Memories
- Run-time bus reconfiguration
 - Optimized for RMW data transaction
 - Data transfer between (2048bit @ 100MHz 2.5V MEM) and (640bit @ 20MHz 1.5V PP)
- Macro-based Design
 - Any kind of DRAM macro can be attached
 - No wait for DRAM macro in RE core design
 - No more pitch-matched design of PE's
 - More layout freedom to designers

Run-Time Bus Reconfiguration

Conventional

Proposed

Memory Configuration

- 3.2GByte/sec Memory BW @ 20MHz
 - 20MHz x 2rmw x 8PPs x 40RGBZ x 2ABmem

Ramchan Woo 20

Memory Access Modes

- (a) : Normal Read-Modify-Write
- (b) : Memory Test / FB Initilize
- (c) : Refresh

Outline

- Introduction
- Architecture
- Memory Access
- Circuit Implementation
- Performance Comparison
- Conclusion and Further Works

E3GRE Core Floorplan

Low-Power Datapath

- PowerPC 603 Latch
- Adder
- Divider
- Alpha-Blend Unit

Special Functional Unit

- Bus Interface Circuit
- Clock Multipler/Generator

Adder

Low-Power and Fast Addition

- More than 100 adders
- Static version of "A 670ps, 64bit Dynamic Low-Power Adder @ 0.25um, 2.5V", [ISCAS 2000]
 - DORP instead of XORP
 - Separated Carry Propagation Path
 - Efficient Carry Grouping
- 11bit fixed-point for 8bit R,G,B,X,Y
- 19bit fixed-point for 16bit Z
- Less than 0.01mW power consumption
- Less than 1ns 19bit addition time

SAS Divider

• Shift-Add-Select Approximation for Low-Power and 1-cycle Division

Divisor	Dividend				
	Signed Number Divider	D	1/D (exact)	1/D (approx.)	Error (% of X)
	2's complement Unpack	0 (000)	Not Defined		
	Unsigned Number Routing Track 0 1 2 3 4 5 6	1 (001)	1	1 =(1/2) ⁰	0
		2 (010)	0.5	$0.5 = (1/2)^1$	0
		3 (011)	0.333333	$0.328125 = (1/2)^2 + (1/2)^4 + (1/2)^6$	0.52%
		4 (100)	0.25	$0.25 = (1/2)^2$	0
	div01 div2 div4 div6 div7 div3 div5	5 (101)	0.2	$0.203125 = (1/2)^3 + (1/2)^4 + (1/2)^6$	0.31%
	2's complement Pack Signed Number	6 (110)	0.166666	$0.171875 = (1/2)^3 + (1/2)^5 + (1/2)^6$	0.52%
חר	Output	7 (111)	0.142857	$\begin{array}{c} 0.140625 \\ = (1/2)^3 + (1/2)^6 \end{array}$	0.22%

Ramchan Woo 25

SAS Divider (Cont'd)

Image Comparison between FP-div and SAS-div

Conventional Floating-Point Divider Proposed SAS-Approximation Divider

Alpha Blend Unit

- Restrict Alpha Value for Low-Power Operation -> Mul-Free
 - A=100%, 50%, 25%, 12.5%, 0%
 - 24 Alpha-Blend Unit

 $BLEND = A \times NEW + (1 - A) \times OLD$ $= A \times (NEW - OLD) + OLD$

Frame Buffer Interface

- Run-Time Bus Reconfiguration
- DRAM Control (12 independent Macros)

FBI Circuits

Clock Generation/Multiplication

• Multiple Clocks

- RISC : 80MHz / E3GRE : 20MHz / FB : 100MHz

DLL-based

CLK Circuit

CLK Simulation Result

Ramchan Woo 32

Chip Micrograph

Rendering Outputs

Name	Data Size	Number of Polygons	
COLOR	100KByte	1,972	
CAR	1.32MByte	26,700	
DINO	352KByte	6,941	

Ramchan Woo 34

Circuit Summary

Process	0.18μm Hyundai CMOS EML 3P6M		
	Total	122	
Power Consumption	E3GRE Core	36	
(mW)	FB	84	
	CLK	2	
	Total	24	
Area	E3GRE Core	5.75	
(mm²)	FB	18.2	
	CLK	0.03	
Number of Logic	Total	190,231	
Transistors	E3GRE Core	188,188	
	CLK	1,343	
	Color-Buffer	4Mb DRAM	
Embedded Memories	Z-Buffer	2Mb DRAM	
	SAM	1.5Kb SRAM	
Operating Frequency	E3GRE Core	20MHz	
	Frame-Buffer	100MHz	
Power Supply	E3GRE Core	1.5V	
Fower Supply	Frame-Buffer	2.5V	

Performance Comparison

	3D-RAM	Media-Chip	RamP-1	E3GRE
Year	JSSC1995	JSSC 1997	ISSCC 2000	ISSCC 2001
Number of Chips	12	1	8	1
Process	0.5µm	0.4µm	0.35µm	0.18µm
Main Clock	100MHz	100MHz	100MHz	20MHz
Maximum Pixel Fill Rate	400Mpixels (33Mpixels/chip)	400Mpixels for clearing	704Mpixels (88Mpixels/chip)	71Mpixels (320Mpixels for clearing)
Sustained Triangle Fill Rate	Less	Much Less	352Mpixels (44Mpixels/chip)	71Mpixels
Die Area	1680mm ² (140mm ² /chip)	122mm ²	416mm ² (52mm ² /chip)	24mm²
Power Consumption	9600mW (for ALU and SAM)	640mW (for 8Mb DRAM)	4700mW	122mW (36mW Logic 84mW 6Mb DRAM 2mW CLK)
Functional Units	eDRAM, eSRAM SIMD-Shade SIMD-Blend Z-compare	eDRAM 4 ALUs	eDRAM, eSRAM SIMD-Shade, SIMD-Blend, Z-compare Horizontal Setup, SIMD-Divide	

Conclusion

• E3GRE Design/Implementation for PDA-Chip

- ViSTA Architecture / SALBA Memory Mapping @ Low CLK
- Low-Power Memory Access (SMA, PWA, PIA)
- Low-Power Circuits
- 100% Full-Custom Design (190,231 logic TRs with 6Mb DRAM Macro)

• Features

- 2.22Mtris/sec (20MHz/9cycle)
- 71Mpixel/sec Pixel Fill Rate (32pixel/triangle)
- 122mW with Embedded Frame-Buffer and Clock Generation
- 3.2GByte/sec Embedded-DRAM Bandwidth
- 24bit True-Color on 256x256 screen
- Hidden Surface Removal with 16bit Z-buffer
- Double-Buffering for Flicker-Free Animation
- Gouraud Shading, Depth Comparison, Alpha-Blending
- Direct Video Transfer through SAM

Further Works

- Efficient Texture Fetching using Unified DRAM Texture Cache
- Complete PDA-3D Pipeline with MobileGL

